发展工业大数据 促进工业互联网深化应用

发展工业大数据 促进工业互联网深化应用优质

工业大数据是工业互联网的关键要素,工业互联网是工业大数据的价值载体,二者相辅相成,既相互影响又密切关联,是一个问题不可分割的两个方面。发展工业大数据,包括工业大数据的理论、技术、产品和保障条件,对于促进工业互联网的蓬勃发展具有重要的价值和意义。工业大数据与工业互联网的关系工业互联网“网络是基础,平台是核心,安全是保障,数据是关键”。首先,工业互联网是工业大数据的重要来源。工业互联网连接的各种设备、工业产品、产业链、企业等,都是工业大数据的供给主体。其次,从工业大数据中提炼的各种隐含知识及经验,对于工业互联网提升决策质量、发现因果关系、优化分析效率及准确性等具有决定性作用。从作用关系的角度来看,工业互联网是新型基础设施,工业大数据是新的生产资源,工业互联网的要素通过数据实现关联和相互作用,工业大数据通过工业互联网实现流转、计算和价值生成。从生产活动的角度来看,工业大数据已经成为工业生产的资源要素,工业互联网是工业大数据的主要承载,二者既是承载与对象的关系,又是静态与动态的辩证统一。因此,发展工业大数据,对于工业互联网的深化运用、实质落地和价值体现,发挥着决定性作用。工业大数据的内涵与特点工业生产经历了一个从数据到大数据的过程。第一类数据是传统的工业数据,主要是来自工业信息化的数据,通常由IT域产生、使用和管理,比如ERP与CRM等系统。信息系统对数据主要依托关系型数据库进行存储。另外还有一部分数据,主要是研发相关的数据,通常由PDM或者PRM来进行管理。这类数据由于技术成熟,并且由标准的信息化系统作为载体,因此可以很好地访问和使用。第二类数据是来自机器设备的数据,也是自动化的数据。这类由传感器产生的数据,以前存储在实时数据库里。然而,按照当时的体系划分,实时数据库并不属于IT系统的一部分,而是属于OT系统。因为机器数据具有高频、高通量的特性,动辄数百万点甚至千万点每秒的产生规模,使得IT领域的关系数据库无法满足其吞吐量、存储和响应速度等方面的性能要求。第三类数据是来自产业链上下游的跨界数据。面对这样的情况,工业界只有对实际采样到的秒级、毫秒级机器数据进行降频处理,将其转变成当时技术手段能够处理的“小”数据,再输入对应的数据库或数据仓库产品中进行分析。因此,工业“大数据”的概念,是当前相对于传统工业数据的内涵而延伸和发展出来的,是现在状态相对于历史状态的相对差异的描述和反映。当前,随着各种技术手段和工具的全面发展,工业大数据得以从幕后走到台前,从样本回归整体,在工业互联网的语境中发挥对现实生产的直接价值和作用。工业大数据相对于以往的大数据范式与形态具有鲜明的工业特点。第一,工业大数据具有多模态的特点。工业大数据形态多样,特别是非结构化数据。这是由工业生产社会化的属性所决定的,生产环节复杂、产业链跨度长、上下游发展程度不均衡、各参与主体任务属性特征差异巨大等因素,导致了数据的多样组织、表达、定义和呈现共同构成多模态特性。第二,工业大数据具有高通量的特点。工业大数据量大,而且实效性要求高,这是区别于以前工业大数据的重要特征。以风力发电为例,按照50赫兹的采用速度计算,普通风机产生的测点数据可以达到每台500个测点左右的规模,并且连续24小时产生,要求系统具有极强的吞吐性能和响应性能。第三,工业大数据具有强关联的特点。这个特点尤其重要,工业现场的数据在语义层有复杂的显性和隐性强关联,不同物理变量之间的关系,既有工业机理方面,也有统计分析方面,不能孤立、局部、片面地看待,否则满足不了工业对于严格性、可靠性和安全性方面的要求。工业大数据的典型应用方向总体上讲,工业大数据的应用分为三个层次:第一类,用于设备级管理。工业作为社会化大规模生产活动,设备是其主要的生产资料之一,重要性非常突出。工业大数据对设备健康管理的意义,不仅在于设备现在的状态怎么样,还包括设备发生故障之后可能出现的连锁反应与后果,最终还需要回归到引发设备健康问题的相关性甚至因果性关系。这是工业知识的范畴,也是工业界长期以来饱受困扰却受限于技术手段和工具发展水平,而没有很好解决的问题。第二类,用于产线和工厂级的智能制造。在这一类应用中,研究的对象由独立的设备变成产线和工厂,抽象层次更高、看待工业颗粒度的级别更加宏观。第三类,用于工业互联的产业链优化场景。通过工业互联网,制造业本身的内涵和边界发生了巨大变化,其中服务性延伸是重要方向。首先,工业大数据分析是挖掘因果关联知识的有效途径。工业生产过程必须保证可量化、能推导和可验证,其本质在于挖掘生产本质的各种因果关系。然而由于认识能力与水平的制约,目前人类在探求工业活动的过程中,只能停留在对关联关系的理解和处理层面。基于工业大数据的分析,为从传统积累的大量历史数据中准确定位、判断、确认因果关系带来新的希望,也是未来可能实现机理突破的重要方向。其次,工业大数据分析是解决不确定性的重要手段。不确定性是工业生产过程面临的主要矛盾之一。导致不确定性的因素有很多,人、机、料、法、环等所有的因素都有可能造成。以往的工业生产依赖经验,因此,随着工业大数据分析技术的快速发展,未来有希望从众多的线索中(成百上千的参数变量,在工业中普遍存在)发现规律,从长期的不确定性中实现确定目标。(作者:清华大学大数据系统软件国家工程实验室总工程师 王晨)

更多热门推荐:
分享到 :
相似文章

发表评论

登录... 后才能评论